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Note 

Consistent Finite Difference Operators 
That Satisfy V -V x = O* 

In this note we investigate problems associated with constructing finite difference 
operators in noncartesian geometry that satisfy V . V x = 0 as an identity. We 
concern ourselves with cylindrical geometry (r, 8, z) only, where the dependence on 
poloidal angle 0 is represented as a Fourier series eim” and the axial dependence z 
as e”“. (This is useful for resolving helical structures.) The latter is for convenience; 
we could just as well use a finite difference representation for the z coordinate. We 
show that a straightforward, formally second-order accurate differencing of 
operators of the form (l/r)(a/a r ru is always inconsistent in the first derivative of ) 
the function u when r - O(dr) for the often important m = 1 component. (This 
corresponds to lateral motion across the line r=O.) If this derivative is then used 
on the RHS of a time dependent system of equations (as the current j, for example, 
in the MHD fluid model) this system is inconsistent in that certain spatial terms are 
nonuniformly convergent as r + 0. We show how this can be remedied and the 
desirable V. V x = 0 property identically retained. Although the result given is for 
cylindrical geometry, any interior boundary fitted coordinate system has at least 
one coordinate singularity where the inverse mapping to Cartesian coordinates is 
not one to one. Thus the problem discussed here has wider applicability. 

In cylindrical geometry the regularity conditions for a scalar and a vector 
represented in the 0, z coordinates by a Fourier series as r + 0 is almost trivially 
derived by considering solutions to V’d =O. For scalar components, 
4, -f(r, z) eim’, the regular solutions are given by Bessel functions J,(r) - 
r”g(r2)- 4, as r +O, defining the r dependence of #m in this limit (note that 
g(r*) - C,“=O anr2n). To find the corresponding r dependence of arbitrary vectors C, 
we simply note that these have the same powers of r as V4,. Thus for 
V E t(lJ/&) + (d/r)(d/dfl) + ,?(a/az) we see that as r -+ 0, C,(m = 0) - rg(r2), 
C,,(m> 1)-r+’ g,,dr’), C,(m 2 0) - rm gz(r2). Thus, only the m = 1 components 
of C,, CB are finite at r = 0. Also, from the requirement that V. C be finite as r + 0 
these components must agree in the constant term of their series expansion. Thus, 
the equations evolving them in time must preserve this property. So evolutionary 
equations for the m = 1 components of C, and C, become linearly dependent as 
r + 0 for all physically well-posed problems. 

* The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the copyright 
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As our prototype equation we consider Faraday’s law 

aB 
-= -VxE, at 

where E is given by an Ohm’s law at least as complicated as E = -V x B + qj; V is 
a time evolved velocity, rl is the resistivity, and j = V x B is the current. We consider 
a simplified equation for V given as 

av 
C7t+ V.VV=jxB. (2) 

Equation (1) preserves V. B = 0 in time once given as an initial condition. For this 
to be preserved in difference form, the discretized version of V .V x E must be zero. 
The common way to do this is to use a staggered grid in radius r, where B,, E,, 
and Ez are defined at the o points and B,, BZ, and E, at the staggered x points as 
shown in Fig. 1. Differencing the expression for (a/at) V . B = -V . V x E at the x 
points j (the only points where V. B is defined), using second-order accurate 
differences, yields for the parts of (a/at) V . B the result, 

=A k@;,+, z - E+,.2) - inC(rEo),+ l/z- (r&)j- ~~~11~ (3a) 
/ 

$(inB,),=% {(rEB)j+,;2-(rEO),~,!*}+nm 
/ 

(3b) 

If we sum Eqs. (3a), (3b), (3~) we see that zero is identically obtained on the 
RHS so that V B = 0 is satisfied numerically to round off error. We next examine 
the accuracy of this type of spatial differencing. 
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FIG. 1. Staggered radial grid showing placement of variables. 
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Consider V . B = 0 differenced as in Eq. (3), where we set m = 1 and to be specific 
choose the phase of B as 

B, = b, sin(8 - nz), 

B, = b. cos(8 - ?ZZ), 

Bz = bz co@ - PZZ). 

Then if we solve this discretized expression for nb7 we have 

(nbz)j= $ ,-& {(rb,),+li2-(rb,)l~1/2}. ( >. 

(4) 

For the m = 1 components of 6, and be we choose the test functions b, = 6, = 
b, + bZr2. If we use these expressions to evaluate the RHS of Eq. (5) at the point 
j= 1, r = Ar/2 (cf., Fig. 1) we obtain the result (nb,),=, = - $b, Ar = -3b,rj=, . The 
analytically calculated answer is nb, = -2b,r,= I = -(b, Ar). The answer given at 
j= 1, r = Ar/2 by Eq. (5) is thus off by 50%. If we examine how the relative error 
e(r), defined as the absolute value of nb, as given by Eq. (5) minus the analytically 
obtained result divided by the latter for the given test functions, decreases as r 
increases, we find that it decays as 

for r Z Ar/2, where r has unit domain. Thus for 50 grid cells and a typical trunca- 
tion error of 5 x 10 P3, r > 0.1 to have e(r) less than truncation error. The truncation 
error and e(r) from Eq. (6) both decay as (Ar)2 for centered differencing so that this 
situation does not change with increasing the number of grid points, although the 
error does shrink in closer to r = 0. 

The problem we have found is that the error in B,/r or the differenced from of 
aB,/& as calculated by Eq. (5) for the m = 1 component is O(1) when r N O(Ar). 
This appears as an error 0( 1) in the m = 1 components of both j, and j, ( j, does 
converge pointwise). For example, B,/r is in error as given by Eq. (6). aB,/ar, 
defined at the o points, is off by k at r = Ar the first left-hand grid point at 
which it is defined. (It obeys a slightly different error formula than Eq. (6).) This 
error enters the RHS of Eq. (2) in the Lorentz force term and makes this type of 
differencing of Eqs. (1) and (2) inconsistent in that the RHS of Eq. (2) has a finite 
error near the axis. 

The word inconsistent as used here applies to terms involving spatial derivatives 
that are nonuniformly convergent as r + 0. Thus one or more time derivatives, 
W/at for example, are nonuniformly convergent in space. Numerically this will 
appear as a persistent glitch in V and j as r -+ 0. Ev.en if B converges uniformly V 
will not even for the steady state case, since if aV/at = 0 in Eq. (2), V.VV cannot 
be pointwise convergent unless j x B is also. We thus emphasize the problem of 
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consistency here as opposed to the stability problems that usually dominate the 
construction of finite difference schemes. 

What we have shown is that centered differencing of terms of the form 
(l/r)(a/&) r( ) leads to a fundamental inconsistency in the first derivative of the 
function when r - O(Ar); that is, the derivative of the function converges pointwise 
but nonuniformly as Ar -+ 0. This has been shown easily by use of a staggered grid 
so that the differenced form of V. B = 0 is an identity. Therefore, in spite of the 
complicated form that V x E in Eq. (1) may have when the Ohm’s law is written 
out in full, the differenced form of this equation (cf., Eq. (3)) preserves the error 
inherent in Eq. (5) for the m = 1 component of the solution since it is an invariant. 
Note that all m # 1 components of the solution do not have this difficulty; 
differencing (l/r)(a/&) r( ) as in Eq. (3) gives a consistent algorithm for all of them. 

A difference algorithm consistent with the original system, Eqs. (1) and (2), for 
the m = 1 component can be constructed by simply expanding terms of the form 
( l/r)(a/&) r( ) before discretization. Then V. B = 0 becomes 

aB, 
ar+ 

B, + imB, 
+ inB, = 0. (7) r 

If we repeat the previous exercise for Eq. (7) using centered differences, then given 
the same test data as before for B, and Be, we obtain the correct answer for B: on 
an unstaggered grid for the m = 1 component. But for the staggered grid given in 
Fig. 1 we have the same error as before owing to the fact that we must define values 
of B, at the x points by second-order accurate averaging. That is, we still lose one 
order of accuracy as Ar/r - O( 1) and this appears as an inconsistent j,, j, current. 
Thus, if we are satisfied with V .V x #O identically then we may use centered, 
second-order finite differences and an unstaggered grid with curvature terms 
expanded as in Eq. (7). Alternatively, we may use higher order finite difference or 
finite element methods so that we retain at least second-order accuracy in the 
principal variables when Ar/r - 0( 1). This may introduce additional complications, 
particularly since the equations for the r and 0 components of m = 1 vectors 
must become equal as r -+ 0. Also, the errors associated with V .V x #O may be 
significant [ 11. These can be kept small by means of “divergence cleansing” [l-3]. 

Since the consistency difficulties arise only for m = 1 vector components, it would 
be desirable to fix the consistency problems with the staggered grid scheme and 
keep V. V x = 0 as an identity. We now show how to accomplish this. 

We define the new dependent variables 

B, = B,+imB,, @a) 

E, =E,+imE,, (8b) 

and eliminate B,, E,) in favor of B, , E, everywhere in our system of equations (cf., 
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Eq. ( 1)). We define B + and E, on the same grid points as B, and E,, respectively. 
Defining (V x E) + = (V x E), + im(V x E)H we have 

(Vx E);= --$ (9c) 

Note that in Eq. (SC) we have split the term (l/r)(a/&) rE, into two terms; also, 
in Eq. (9b) we have combined 

(Note that finite differencing of the RHS of Eq. (10) poses no problems as r + 0. 
Since E=(m = 1) - r is defined on the o points we just define E;/r as r -+ 0 as 
Ez(r = dr)/dr). For m = 1, Eqs. (9) greatly simplify. Thus we recommend using the 
transformation given by Eqs. (8) only for the m = 1 components. With Eqs. (9) and 
the form for the divergence of a vector as given by Eq. (7) we show that the m = 1 
component of V. V x E = 0 in difference form. Thus, for variables staggered as 
shown in Fig. 1 we have at the x point 

a aB, 
=2(Vx E), 

at ar , dr i 

aB+ _ (VxE)+ 
atri r I 

-g inB, = in(V x E)z 
i i 

-aE, 
at. J 

+ n +-z (J%,+,~~ - &-J 
J 

(lib) 

(llc) 

So from the sum of the RHSs of Eqs. (1 la), (1 lb), (1 lc) we see that zero is identi- 
cally obtained. Of course, the terms (+%)(E,/ r and (dE+/dr) at the x points j ) 
must be defined everywhere consistently. For the given test data (B, = 0, 
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B, = ho + b2r2) this scheme is trivially seen to give the correct values of nhz and is 
thus consistent. Thus the difference form given by Eqs. (11) is consistent since it is 
just Eq. (7) center-differenced. This is unlike Eqs. (3) which as shown from Eq. (5) 
are inconsistent in the first spatial derivative. By using, for every vector C in 
Eq. (1 ), the transformation C + = C,. + iC, in place of C,, for the m = 1 component 
we remove the linear dependence of the evolution equations for C, and C,; the 
value of C+(r = 0) is, of course, zero. (This can also be done for the velocity 
equation to remove the linear dependence as r -+ 0 of V, and I’(); for example, 
V, = I/,+ iv, as well as V, can be defined. Whether or not this is desirable may 
depend the precise form of Eq. (2). The point is to avoid nonuniformity convergent 
spatial terms.) Thus we construct for the m = 1 mode in place of the dB,/dt compo- 
nent of Eq. (1) an equation for aB+/at using Eqs. (9); this equation is utilized 
everywhere in radius, and not just near r = 0. This causes no peculiarities for hyper- 
bolic systems. Physically what happens in the vicinity of r = 0 for any hyperbolic 
system of equations in cylindrical coordinates is that the characteristics have the 
form r2t = const or r2/t = const in the t - r plane. Thus, the point r = 0 is always a 
characteristic. This is how the equations distinguish physically meaningful r 3 0 
from unphysical r < 0. 

For parabolic operators such as V2 the algebraic terms resulting from the Fourier 
series expansion in 8 combine to robustly guarantee that B, -+ 0 as r + 0 giving 

as 
+x -a(v)B+, at (12) 

where a(r) + + cc as r -+ 0. Therefore, such terms must always be implicitly 
time-differenced. This is easy to do. (Parabolic operators are usually implicitly 
differenced anyway.) 

In conclusion, we have shown that the consistency of finite difference schemes in 
noncartesian coordinate systems must be carefully considered when the coordinate 
variable becomes the order of the grid spacing. It was demonstrated for the MHD 
equations in cylindrical geometry with a Fourier series expansion in poloidal angle 
that the m = 1 vector component of the current is represented inconsistently by 
formally second-order accurate finite differencing of operators of the form 
(l/r)(a/&) r( ). This was easy to show because the equations preserved an inconsis- 
tent discrete form of V .V x E = 0. This difficulty could be overcome by a transfor- 
mation C, = C, + iC, (for the m = 1 component of every vector C) in the induction 
equation that everywhere removes C,) in favor of C, , and by appropriately 
rewriting certain terms before spatial differencing. This eliminates the linear 
dependence of C, and C, as r -+ 0 and, in addition, preserves V V x C = 0 
identically on a staggered grid. The expression for C (the Ohm’s law) can be 
arbitrarily complicated. The m # 1 components were consistent in their original 
form and may be radially differenced in the usual manner. 

Although we have only considered in detail a cylindrical coordinate system, all 
interior noncartesian coordinate systems have a coordinate center with problems 
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similar to those considered in this note. Thus, similar difficulties may arise. We 
expect the type of solution proposed here (a transformation of certain dependent 
variables and some algebraic rearrangement of terms) to carry over in an 
appropriately modified form. 
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